Litekauto.ru

Авто Сервис
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Стабилизатор напряжения

Стабилизатор напряжения

Стабилиза́тор напряже́ния (англ.  Voltage regulator ) — электромеханическое [1] или электрическое (электронное) устройство, имеющее вход и выход по напряжению, предназначенное для поддержания выходного напряжения в узких пределах, при существенном изменении входного напряжения и выходного тока нагрузки.

Источник стабилизированного питания (англ.  Power conditioner ) — оборудование, применяемое для преобразования электрической энергии в форму, пригодную для последующего использования. [2]

По типу выходного напряжения стабилизаторы делятся на стабилизаторы постоянного напряжения и переменного напряжения. Как правило, вид напряжения на входе стабилизатора и на его выходе совпадают (постоянное либо переменное), но в некоторых типах стабилизаторов их виды разные.

Виды стабилизаторов тока

Отличительной чертой стабилизаторов тока является их значительное выходное сопротивление. Это дает возможность исключить влияние напряжения на входе, и сопротивления нагрузки, на значение тока на выходе устройства. Стабилизаторы тока поддерживают выходной ток в определенных пределах, меняя при этом напряжение таким образом, что ток, протекающий по нагрузке, остается постоянным.

Стабилизаторы тока на резисторе

В элементарном случае генератором тока может быть схема, состоящая из блока питания и сопротивления. Подобная схема часто используется для подключения светодиода, выполняющего функцию индикатора.

Stabilizator na rezistore

Из недостатков такой схемы можно отметить необходимость использования высоковольтного источника. Только при таком условии можно использовать резистор, имеющий высокое сопротивление, и получить хорошую стабильность тока. На сопротивлении рассеивается мощность P = I 2 х R.

Стабилизаторы на транзисторах

Значительно лучше функционируют стабилизаторы тока, собранные на транзисторах.

Stabilizator toka na tranzistore

Можно выполнить настройку падения напряжения таким образом, что оно будет очень маленьким. Это дает возможность снижения потерь при хорошей стабильности тока на выходе. На выходе транзистора сопротивление очень большое. Такая схема применяется для подключения светодиодов или зарядки аккумуляторных батарей малой мощности.

Напряжение на транзисторе определяется стабилитроном VD1. R2 играет роль датчика тока и обуславливает ток на выходе стабилизатора. При увеличении тока падение напряжения на этом резисторе становится больше. Напряжение поступает на эмиттер транзистора. В итоге напряжение на переходе база-эмиттер, которое равно разности напряжения базы и эмиттерного напряжения, снижается, и ток возвращается к заданной величине.

Схема токового зеркала

Аналогично функционируют генераторы тока. Популярной схемой таких генераторов является «токовое зеркало», в которой вместо стабилитрона применяется биполярный транзистор, а точнее, эмиттерный переход. Вместо сопротивления R2 применяется сопротивление эмиттера.

Читайте так же:
Регулировка схождения передних колес на тракторе мтз 82

Stabilizator toka zerkalo

Стабилизаторы тока на полевике

Схема с применением полевых транзисторов более простая.

Stabilizator toka na polevike

Нагрузочный ток проходит через R1. Ток в цепи: «+» источника напряжения, сток-затвор VТ1, нагрузочное сопротивление, отрицательный полюс источника – очень незначительный, так как сток-затвор имеет смещение в обратную сторону.

Напряжение на R1 положительное: слева «-», справа напряжение равно напряжению правого плеча сопротивления. Поэтому напряжение затвора относительно истока минусовое. При снижении нагрузочного сопротивления, ток повышается. Поэтому напряжение затвора по сравнению с истоком имеет еще большую разницу. Вследствие этого транзистор закрывается сильнее.

При большем закрытии транзистора нагрузочный ток снизится, и возвратится к начальной величине.

Устройства на микросхеме

В прошлых схемах имеются элементы сравнения и регулировки. Аналогичная структура схемы применяется при проектировании устройств, выравнивающих напряжение. Отличие устройств, стабилизирующих ток и напряжение, заключается в том, что в цепь обратной связи сигнал приходит от датчика тока, который подключен к цепи нагрузочного тока. Поэтому для создания стабилизаторов тока используют популярные микросхемы 142 ЕН 5 или LМ 317.

Stabilizatory toka LМ 317

Здесь роль датчика тока играет сопротивление R1, на котором стабилизатор поддерживает постоянное напряжение и нагрузочный ток. Величина сопротивления датчика значительно ниже, чем нагрузочное сопротивление. Снижение напряжения на датчике влияет на напряжение выхода стабилизатора. Подобная схема хорошо сочетается с зарядными устройствами, светодиодами.

Импульсный стабилизатор

Высокий КПД имеют импульсные стабилизаторы, выполненные на основе ключей. Они способны при незначительном напряжении входа создавать высокое напряжение на потребителе. Такая схема собрана на микросхеме МАХ 771.

Impulsnyi stabilizator

Сопротивления R1 и R2 играют роль делителей напряжения на выходе микросхемы. Если напряжение на выходе микросхемы становится выше опорного значения, то микросхема снижает выходное напряжение, и наоборот.

Если схему изменить таким образом, чтобы микросхема реагировала и регулировала ток на выходе, то получится стабилизированный источник тока.

Impulsnyi stabilizator 2

При падении напряжения на R3 ниже 1,5 В, схема работает в качестве стабилизатора напряжения. Как только нагрузочный ток повышается до определенного уровня, то на резисторе R3 падение напряжения становится больше, и схема действует как стабилизатор тока.

Читайте так же:
Настройка параметров синхронизации времени

Сопротивление R8 подключается по схеме тогда, когда напряжение становится выше 16,5 В. Сопротивление R3 задает ток. Отрицательным моментом этой схемы можно отметить значительное падение напряжения на токоизмерительном сопротивлении R3. Эту проблему можно решить путем подключения операционного усилителя для усиления сигнала с сопротивления R3.

Устройство и принцип действия

На нестабильность нагрузочного тока влияет значение сопротивления и напряжения на входе. Пример: в котором сопротивление нагрузки постоянно, а напряжение на входе повышается. Ток нагрузки при этом также возрастает.

Ustroistvo i printsip deistviia

В результате этого повысится ток и напряжение на сопротивлениях R1 и R2. Напряжение стабилитрона станет равным сумме напряжений сопротивлений R1, R2 и на переходе VT1 база-эмиттер: Uvd1=UR1+UR2+UVT1(б/э)

Напряжение на VD1 не меняется при меняющемся входном напряжении. Вследствие этого ток на переходе база-эмиттер снизится, и повысится сопротивление между клеммами эмиттер-коллектор. Сила тока на переходе коллектор-эмиттере и нагрузочное сопротивление станет снижаться, то есть переходить к первоначальной величине. Так выполняется выравнивание тока и поддержание его на одном уровне.

Стабилизатор для светодиодов
Изготовить такое устройство самостоятельно можно с применением микросхемы LМ 317. Для этого останется только подобрать резистор. Питание для стабилизатора целесообразно применять следующее:
  • Блок от принтера на 32 В.
  • Блок от ноутбука на 19 В.
  • Любой блок питания на 12 В.

Stabilizatory toka dlia svetodiodov

Достоинством такого устройства является низкая стоимость, простота конструкции, повышенная надежность. Сложную схему нет смысла собирать самостоятельно, проще ее приобрести.

↑ Детали

Схемка простинькая но всё хорошее основано на большом усилении транзисторов (более 500). А VТ3 вообще составной. Букв на названиях транзисторов нет, но должны все подойти. У меня все «Г». Главное – усиление и малые утечки. В справочнике пишут, что у некоторых букв «Ку» от 200, но мои все имели более 600. Переменники попались группы А. Для VТ3 нужен радиатор. Я поставил какой был и влез в корпус. Максимальную надежность обеспечит лишь радиатор, расчитанный на рассеивание мощности равной Uвходное умножить на 3А, т.е. 30. 50Вт.
Думаю мало кому понадобится 1V на 3А долговременно, поэтому смело можно ставить радиатор в 2. 3 раза меньше.

VD2 и VD3 служат источниками напряжения в 0,6V. Можно использовать и другие кремниевые диоды. R4 – несколько сдвигает порог, когда загорается светодиод. Если он горит, значит вовсю идет ограничение выходного тока. R1 просто ограничивает ток светодиода. Потенциометры можно и с большим номиналом (в 2. 3 раза). R8 можно уменьшить (где-то до 4к), если у транзистора VТ3 не хватит усиления.

Читайте так же:
Как отрегулировать замок багажника на дэу нексия

С печатной платой – как обычно в простых схемах, изготавливаемых в единственном экземпляре. Была плата для другого регулируемого стабилизатора напряжения, параметры которого не устраивали. Она была превращена в макетницу и на ней собрана данная схема. Резисторы использованы на 0,25 Вт (можно и 0,125) – не вижу особых требований. При 3А (если Ваш выпрямитель их даст) – заводской проволочный R2 (2 Вт-а) будет на пределе и наверно стоит ставить мощнее (5Вт). Электролиты — К50-16 на 16V.

Eсли нет составного транзистора – «составьте» его из чего есть. Начните с КТ817 + КТ315, с буквами «Б» и дальше. (Если всё же не хватит усиления у VТ3, я бы уменьшил R9 и R10 до 200 Ом и R8 до 2 кОм).

Трансформатор, выпрямитель и конденсатор фильтра – Ваши. Они не менее важны, но я хотел рассказать только о таком более-менее универсальном стабилизаторе. (У меня стоит 10-ватный транс на 10V/1А переменного, откуда-то взятый блочный мостик на 1А, и 4000мкФ/16V электролит фильтра. Стыдно, зато всё влезает в корпус.

Нужно заметить, что стрелочный индикатор (в схеме не указан) с помощию переключателя, можно использовать и как вольтметр и как амперметр. В первом случае видим выходное напряжение, во втором выходной ток.

Виды корректирующих стабилизаторов напряжения:

Релейные – прибор компактных размеров, прост в обслуживании, реализуется по невысокой цене. Напряжение на выходе измеряется ступенчато, процесс стабилизации зависит от количества ступеней и ключей. Минусы прибора: погрешность в показателях напряжения на выходе и быстрый износ реле.

Электронные – современное оборудование, подразделяемое на симисторные и тиристорные. Могут использоваться для подключения разных бытовых приборов. Характеризуются быстрой реакцией на скачки напряжения и долговечным сроком эксплуатации. При работе малошумны, поэтому успешно используются в городских квартирах. Из минусов – высокая цена, но это вполне оправдано качественными характеристиками прибора.

Читайте так же:
Как регулировать тормоза на матизе

Электромеханические – обеспечивают плавную регулировку напряжения, но с медленным действием. Не особо надежны в защите от резких скачков напряжения, могут попросту остановить подачу электричества к прибору, что недопустимо в некоторых работах. Такие приборы чаще используются в быту. Популярность электромеханических стабилизаторов обусловлена доступной стоимостью.

Инверторные – работают практически бесшумно в широком диапазоне напряжения на выходе. Имеют небольшие размеры, практичны в эксплуатации. Из недостатков – высокая стоимость.

Линейные – стабилизацию напряжения обеспечивают катушки и электромагнитный сердечник, находящийся в оснащении прибора. Такое оборудование реализуется по самой доступной цене и особо популярно в бытовой сфере. Но, используя линейный стабилизатор, не получится подключить сразу несколько электроприборов. Они предназначены только для отдельных бытовых устройств.

Стабилизаторы напряжения для дома: отзывы и какой лучше

Приведем несколько удачных моделей стабилизаторов разных типов, чтобы вы могли ориентироваться на отзывы других покупателей.

РЕСАНТА ACH-5000/1-Ц

Качественный и бесшумный релейный стабилизатор с большим запасом мощности в 5000 Вт. Способен стабилизировать колебания напряжения от 140 до 260 В. На выходе получается напряжение с погрешностью 8% от 220 В — в среднем, от 202 до 238 В. Устанавливается на полу.

Штиль IS550

Простой в установке настенный стабилизатор с оптическими индикаторами и двойным преобразованием, а самое главное — недорогой. Впрочем, это обусловлено низким запасом мощности — 400 Вт. Зато диапазон входного напряжения огромный — от 90 до 310 В, и точность стабилизации высокая — погрешность всего 2%. Этим устройством можно отдельно экранировать от перепадов напряжения критически важные в частном доме приборы — к примеру, отопительный котел.

Назначение выводов микросхемы:

 Выводы LM317 регулируемого стабилизатор напряжения и тока

 Модификации LM317 регулируемого стабилизатор напряжения и тока

Параметры LM317 регулируемого стабилизатор напряжения и тока

 Характеристики LM317 регулируемого стабилизатор напряжения и тока

Стабилизаторы напряжения

Стабилизатор напряжения РЕСАНТА АСН-10000 Н/1-Ц Lux [63/6/18]

Стабилизаторы напряжения в автоматическом режиме регулируют напряжение электрического тока при больших колебаниях и просадках в электрической сети. Они обеспечивают защиту бытовых приборов при скачках напряжения, спасая ее от непредвиденного ремонта. А также обеспечивают пожаробезопрасность, т.к. возросшая нагрузка на провода может их оплавить и привести к короткому замыканию. Особенно актуальны, где электрические системы питания отличаются нестабильной работой. Работают в сетях 220 и 380 Вольт.

Читайте так же:
Регулировка номинального тока автомата

Основные типы

Релейные отличаются высокой скоростью срабатывания на скачки входного напряжения. Низкая цена на этот тип cтабилизаторов позволяет обеспечить защиту бытовых приборов и промышленного оборудования. Основной недостаток: реле срабатывает даже при небольших перепадах сетевого напряжения.

Электронные (тиристорные) стабилизаторы отличаются бесшумной работой. Регулировка входного напряжения (пониженного и повышенного) происходит как на релейных аппаратах. Только на обмотках трансформатора вместо реле устанавливаются силовые ключи в виде тиристоров.

Электромеханические плавно регулируют напряжение с помощью графитовых щёток, которые передвигаются по обмотке трансформатора. Эти устройства отличаются высокой точностью стабилизации и низкой ценой по сравнению с электронными.

Инверторные преобразовывают переменный ток в постоянный. Это позволяет запускать чувствительную и высокоточную технику. Цена на такие модели высокая. Достоинства: компактные размеры и низкий уровень шума.

Как выбрать — основные характеристики и параметры

  • Мощность нагрузки — определяется мощностью устройств, которые используются дома. При этом нужно учесть, что при запуске у приборов она выше, поэтому лучше выбрать модель с выходным напряжением на 20% больше. В основном устройства с мощн-ю до 5000 ВА используются для одного или нескольких приборов, более 4000 Вт — для всех приборов.
  • Тип сети. Модели бывают: однофазные (220 В) – используются для дома и офиса; 380 В (3 фазы) – используются при большой нагрузке (от 12 кВт) сети на производстве и больших предприятиях.
  • Точность стабилизации — зависит от входного напряжения. Выбирают с минимальным значением.

Помимо основных характеристик, необходимо обратить внимание на специальные cтабилизаторы, предназначенные для защиты конкретного оборудования (котлы, холодильники, телевизоры и другие). Для дач и частных домов используют магистральные приборы.

Где купить

В каталоге нашего магазина предлагаются различные двухфазные и трехфазные модели. Все товары имеют описания и технические характеристики. Купить стабилизатор просто: добавьте нужный товар в корзину, заполните контактные данные, выберите магазин для самовывоза или укажите адрес для курьерской доставки. Если есть вопросы или необходима консультация, оформите обратный звонок или позвоните нам — это бесплатно. Специалисты проконсультируют по условиям покупки и помогут найти нужный стабилизатор из наличия.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector