Litekauto.ru

Авто Сервис
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование скорости асинхронного двигателя

Регулирование скорости асинхронного двигателя

Долгое время в промышленности использовались нерегулируемые электроприводы на базе АД, но, в последнее время возникла надобность в регулировании скорости асинхронных двигателей.

Частота вращения ротора равна

При этом, синхронная частота вращения зависит от частоты напряжения и числа пар полюсов

Исходя из этого, можно сделать вывод, что регулировать скорость АД можно с помощью изменения скольжения, частоты и числа пар полюсов.

Рассмотрим основные способы регулировки.

Потери неизбежны?

Остановимся более подробно на электрических потерях, возникающих в асинхронном электродвигателе.

Работа электрического привода характеризуется целым рядом электрических и механических величин.

К электрическим величинам относятся:

  • напряжение сети,
  • ток электродвигателя,
  • магнитный поток,
  • электродвижущая сила (ЭДС).
  • частота вращения n (об/мин),
  • вращающийся момент M (Н•м) двигателя,
  • механическая мощность электродвигателя P (Вт), определяемая произведением момента на частоту вращения: P=(M•n)/(9,55).

при учете которой формула приобретает вид:

Зависимость вращающего момента двигателя M от частоты вращения его ротора n называется механической характеристикой электродвигателя. Отметим, что при работе асинхронной машины со статора на ротор передается через воздушный зазор с помощью электромагнитного поля так называемая электромагнитная мощность:

Часть этой мощности передается на вал ротора в виде механической мощности согласно выражению (2), а остальная часть выделяется в виде потерь в активных сопротивлениях всех трех фаз роторной цепи.

Эти потери, называемые электрическими, равны:

Таким образом, электрические потери определяются квадратом тока, проходящего по обмоткам.

Они в сильной степени определяются нагрузкой асинхронного двигателя. Все другие виды потерь, кроме электрических, изменяются с нагрузкой менее существенно.

Поэтому рассмотрим, как изменяются электрические потери асинхронного двигателя при регулировании частоты вращения.

Электрические потери непосредственно в обмотке ротора электродвигателя выделяются в виде тепла внутри машины и потому определяют ее нагрев. Очевидно, чем больше электрические потери в цепи ротора, тем меньше КПД двигателя, тем менее экономична его работа.

Учитывая, что потери в статоре примерно пропорциональны потерям в роторе, еще более понятно стремление уменьшить электрические потери в роторе. Тот способ регулирования частоты вращения двигателя является экономичным, при котором электрические потери в роторе относительно невелики.

Из анализа выражений следует, что самый экономичный способ управления двигателями заключается в частоте вращения ротора, близкой к синхронной.

Основные сведения о частотно-регулируемом электроприводе

Частотник в комплекте с асинхронным электродвигателем позволяет заменить электропривод постоянного тока. Системы регулирования скорости двигателя постоянного тока достаточно просты, но слабым местом такого электропривода является электродвигатель. Он дорог и ненадежен. При работе происходит искрение щеток, под воздействием электроэрозии изнашивается коллектор. Такой электродвигатель не может использоваться в запыленной и взрывоопасной среде.

Асинхронные электродвигатели превосходят двигатели постоянного тока по многим параметрам: они просты по устройству и надежны, так как не имеют подвижных контактов. Они имеют меньшие по сравнению с двигателями постоянного тока размеры, массу и стоимость при той же мощности. Асинхронные двигатели просты в изготовлении и эксплуатации.

Основной недостаток асинхронных электродвигателей – сложность регулирования их скорости традиционными методами (изменением питающего напряжения, введением дополнительных сопротивлений в цепь обмоток). Управление асинхронным электродвигателем в частотном режиме до недавнего времени было большой проблемой, хотя теория частотного регулирования была разработана еще в тридцатых годах. Развитие частотно-регулируемого электропривода сдерживалось высокой стоимостью преобразователей частоты. Появление силовых схем с IGBT-транзисторами, разработка высокопроизводительных микропроцессорных систем управления позволило различным фирмам Европы, США и Японии создать современные преобразователи частоты доступной стоимости.

Известно, что регулирование частоты вращения исполнительных механизмов можно осуществлять при помощи различных устройств: механических вариаторов, гидравлических муфт, дополнительно вводимыми в статор или ротор резисторами, электромеханическими преобразователями частоты, статическими преобразователями частоты.

Применение первых четырех устройств не обеспечивает высокого качества регулирования скорости, неэкономично, требует больших затрат при монтаже и эксплуатации. Статические преобразователи частоты являются наиболее совершенными устройствами управления асинхронным приводом в настоящее время.

Читайте так же:
Регулировка карбюратора на яве старушке

Принцип частотного метода регулирования скорости асинхронного двигателя заключается в том, что, изменяя частоту f1 питающего напряжения, можно в соответствии с выражением

неизменном числе пар полюсов p изменять угловую скорость магнитного поля статора.

Этот способ обеспечивает плавное регулирование скорости в широком диапазоне, а механические характеристики обладают высокой жесткостью.

Регулирование скорости при этом не сопровождается увеличением скольжения асинхронного двигателя, поэтому потери мощности при регулировании невелики. Для получения высоких энергетических показателей асинхронного двигателя – коэффициентов мощности, полезного действия, перегрузочной способности – необходимо одновременно с частотой изменять и подводимое напряжение.

Закон изменения напряжения зависит от характера момента нагрузки Mс . При постоянном моменте нагрузки Mс=const напряжение на статоре должно регулироваться пропорционально частоте:

Для вентиляторного характера момента нагрузки это состояние имеет вид:

При моменте нагрузки, обратно пропорциональном скорости:

Таким образом, для плавного бесступенчатого регулирования частоты вращения вала асинхронного электродвигателя, преобразователь частоты должен обеспечивать одновременное регулирование частоты и напряжения на статоре асинхронного двигателя.

Преимущества использования регулируемого электропривода в технологических процессах

Применение регулируемого электропривода обеспечивает энергосбережение и позволяет получать новые качества систем и объектов. Значительная экономия электроэнергии обеспечивается за счет регулирования какого-либо технологического параметра. Если это транспортер или конвейер, то можно регулировать скорость его движения. Если это насос или вентилятор – можно поддерживать давление или регулировать производительность. Если это станок, то можно плавно регулировать скорость подачи или главного движения.

Особый экономический эффект от использования преобразователей частоты дает применение частотного регулирования на объектах, обеспечивающих транспортировку жидкостей. До сих пор самым распространённым способом регулирования производительности таких объектов является использование задвижек или регулирующих клапанов, но сегодня доступным становится частотное регулирование асинхронного двигателя, приводящего в движение, например, рабочее колесо насосного агрегата или вентилятора.

Перспективность частотного регулирования наглядно видна из рисунка 1

Таким образом, при дросселировании поток вещества, сдерживаемый задвижкой или клапаном, не совершает полезной работы. Применение регулируемого электропривода насоса или вентилятора позволяет задать необходимое давление или расход, что обеспечит не только экономию электроэнергии, но и снизит потери транспортируемого вещества.

Структура частотного преобразователя

Большинство современных преобразователей частоты построено по схеме двойного преобразования. Они состоят из следующих основных частей: звена постоянного тока (неуправляемого выпрямителя), силового импульсного инвертора и системы управления.

Звено постоянного тока состоит из неуправляемого выпрямителя и фильтра. Переменное напряжение питающей сети преобразуется в нем в напряжение постоянного тока. Силовой трехфазный импульсный инвертор состоит из шести транзисторных ключей. Каждая обмотка электродвигателя подключается через соответствующий ключ к положительному и отрицательному выводам выпрямителя. Инвертор осуществляет преобразование выпрямленного напряжения в трехфазное переменное напряжение нужной частоты и амплитуды, которое прикладывается к обмоткам статора электродвигателя.

В выходных каскадах инвертора в качестве ключей используются силовые IGBT-транзисторы. По сравнению с тиристорами они имеют более высокую частоту переключения, что позволяет вырабатывать выходной сигнал синусоидальной формы с минимальными искажениями.

Принцип работы преобразователя частоты

Преобразователь частоты состоит из неуправляемого диодного силового выпрямителя В, автономного инвертора , системы управления ШИМ, системы автоматического регулирования, дросселя Lв и конденсатора фильтра Cв (рис.2). Регулирование выходной частоты fвых. и напряжения Uвых осуществляется в инверторе за счет высокочастотного широтно-импульсного управления.

Широтно-импульсное управление характеризуется периодом модуляции, внутри которого обмотка статора электродвигателя подключается поочередно к положительному и отрицательному полюсам выпрямителя.

Длительность этих состояний внутри периода ШИМ модулируется по синусоидальному закону. При высоких (обычно 2…15 кГц) тактовых частотах ШИМ, в обмотках электродвигателя, вследствие их фильтрующих свойств, текут синусоидальные токи.

Читайте так же:
Описание двигатель регулировка клапанов

Рис.2. Упрощенная схема инвертора с широтно-импульсной модуляцией (ШИМ).

Таким образом, форма кривой выходного напряжения представляет собой высокочастотную двухполярную последовательность прямоугольных импульсов (рис. 3). Частота импульсов определяется частотой ШИМ, длительность (ширина) импульсов в течение периода выходной частоты АИН промодули-рована по синусоидальному закону. Форма кривой выходного тока (тока в обмотках асинхронного электродвигателя) практически синусоидальна.

Регулирование выходного напряжения инвертора можно осуществить двумя способами: амплитудным (АР) за счет изменения входного напряжения Uв и широтно-импульсным (ШИМ) за счет изменения программы переключения вентилей V1-V6 при Uв = const.

Второй способ получил распространение в современных преобразователях частоты благодаря развитию современной элементной базы (микропроцессоры, IBGT-транзисторы). При широтно-импульсной модуляции форма токов в обмотках статора асинхронного двигателя получается близкой к синусоидальной благодаря фильтрующим свойствам самих обмоток.

Рис.3. Форма кривых напряжения и тока на выходе инвертора с широтно-импульсной модуляцией.

Такое управление позволяет получить высокий КПД преобразователя и эквивалентно аналоговому управлению с помощью частоты и амплитуды напряжения. Современные инверторы выполняются на основе полностью управляемых силовых полупроводниковых приборов – запираемых GTO – тиристоров, либо биполярных IGBT-транзисторов с изолированным затвором. На рис. 2.45 представлена 3-х фазная мостовая схема автономного инвертора на IGBT-транзисторах.

Она состоит из входного емкостного фильтра Cф и шести IGBT-транзисторов V1-V6 включенными встречно-параллельно диодами обратного тока D1-D6.

За счет поочередного переключения вентилей V1-V6 по алгоритму, заданному системой управления, постоянное входной напряжение Uв преобразуется в переменное прямоугольно-импульсное выходное напряжение. Через управляемые ключи V1-V6 протекает активная составляющая тока асинхронного электродвигателя, через диоды D1-D6 – реактивная составляющая тока.

Рис.4. Схема преобразователя частоты (инвертора)

И – трехфазный мостовой инвертор;
В – трехфазный мостовой выпрямитель;
Сф – конденсатор фильтра;

Регулирование частоты вращения ДПТ НВ изменение напряжения в цепи якоря

Регулирование часто­ты вращения двигателя изменением питающего напряжения при­меняется лишь при IB = const, т. е. при раздельном питании цепей обмотки якоря и обмотки возбуждения при независимом возбуж­дении.

Частота вращения в режиме х.х. n пропорциональна напря­жению, а от напряжения не зависит, поэтому ме­ханические характеристики двигателя при изменении напряжения не меняют угла наклона к оси абсцисс, а смещаются по высоте, оставаясь параллельными друг другу (см. рис. 29.4, в). Для осуще­ствления этого способа регулирования необходимо цепь якоря двигателя подключить к источнику питания с регулируемым на­пряжением. Для управления двигателями малой и средней мощно­сти в качестве такого источника можно применить регулируемый выпрямитель, в котором напряжение постоянного тока меняется регулировочным автотрансформатором (АТ), включенным на вхо­де выпрямителя (рис. 29.6,а).

Для управления двигателями большой мощности целесооб­разно применять генератор постоянного тока независимого возбу­ждения; привод осуществляется посредством приводного двигате­ля (ПД), в качестве которого обычно используют трехфазный двигатель переменного тока. Для питания постоянным током це­пей возбуждения генератора Г и двигателя Д используется возбу­дитель В — генератор постоянного тока, напряжение на выходе которого поддерживается неизменным. Описанная схема управле­ния двигателем постоянного тока (рис. 29.6, б) известна под на­званием системы «генератор — двигатель» (Г—Д).

clip_image010

Рис. 29.6. Схемы включения двигателей постоянного тока при регули­ровании частоты вращения изменением напряжения в цепи якоря

Изменение напряжения в цепи якоря позволяет регулировать частоту вращения двигателя вниз от номинальной, так как напря­жение свыше номинального недопустимо. При необходимости регулировать частоту вращения вверх от номинальной можно вос­пользоваться изменением тока возбуждения двигателя.

Изменение направления вращения (реверс) двигателя, рабо­тающего по системе ГД, осуществляется изменением направле­ния тока в цепи возбуждения генератора Г переключателем П, т. е. переменой полярности напряжения на его зажимах. Если двигатель постоянного тока работает в условиях резко переменной на­грузки, то для смягчения колебаний мощности, потребляемой ПД из трехфазной сети, на вал ПД помещают маховик М, который за­пасает энергию в период уменьшения нагрузки на двигатель Д и отдает ее в период интенсивной нагрузки двигателя.

Читайте так же:
Отрегулируйте давление в шинах

Регулирование частоты вращения изменением напряжения в цепи якоря обеспечивает плавное экономичное регулирование в широком диапазоне nMAX/nMIN ≥ 25 . Наибольшая частота вращения здесь ограничивается условиями коммутации, а наименьшая — условиями охлаждения двигателя.

Еще одним достоинством рассматриваемого способа регули­рования является то, что он допускает безреостатный пуск двига­теля при пониженном напряжении.

Принцип работы и число оборотов асинхронных двигателей

Данный вопрос рассмотрим на примере АДКР, как наиболее распространенного типа электродвигателей подъемно-транспортном и обрабатывающем оборудовании. Напряжение от сети подается на обмотку статора, каждая из трех фаз которой смещена геометрически на 120°. После подачи напряжения возникает магнитное поле, создающее путем индукции ЭДС и ток в обмотках ротора. Последнее вызывает электромагнитные силы, заставляющие ротор вращаться. Еще одна причина, по которой все это происходит, а именно, возникает ЭДС, является разность оборотов статора и ротора.

Одной из ключевых характеристик любого АДКР является частота вращения, расчет которой можно вести по следующей зависимости:

n = 60f / p, об/мин

где f – частота сетевого напряжения, Гц, р – число полюсных пар статора.

Все технические характеристики указываются на металлической табличке, закрепленной на корпусе. Но если она отсутствует по какой-то причине, то определить число оборотов нужно вручную по косвенным показателям. Как правило, используется три основных метода:

  • Расчет количества катушек. Полученное значение сопоставляется с действующими нормами для напряжения 220 и 380В (см. табл. ниже),

Расчет количества катушек

  • Расчет оборотов с учетом диаметрального шага обмотки. Для определения используется формула вида:

где 2p – число полюсов, Z1 – количество пазов в сердечнике статора, y – собственно, шаг укладки обмотки.

Стандартные значения оборотов:

Стандартные значения оборотов

  • Расчет числа полюсов по сердечнику статора. Используются математические формулы, где учитываются геометрические параметры изделия:

2p = 0,35Z1b / h или 2p = 0,5Di / h,

где 2p – число полюсов, Z1 – количество пазов в статоре, b – ширина зубца, см, h – высота спинки, см, Di – внутренний диаметр, образованный зубцами сердечника, см.

После этого по полученным данным и магнитной индукции нужно определить количество витков, которое сверяется с паспортными данными двигателей.

Частотное регулирование

Всего десять лет назад в торговой сети регуляторов частоты вращения скорости ЭД было небольшое количество. Причиной тому служило то, что тогда ещё не производились дешёвые силовые высоковольтные транзисторы и модули.

На сегодня частотное преобразование – самый распространённый способ регулирования скорости двигателей. Трёхфазные преобразователи частоты создаются для управления 3-фазными электродвигателями.

Трехфазный преобразователь частоты - схема

Однофазные же двигатели управляются:

  • специальными однофазными преобразователями частоты;
  • 3-фазными преобразователями частоты с устранением конденсатора.

Три способа управления однофазными асинхронными двигателями

Каждый день инженеры проектируют системы, в которых используются асинхронные двигатели с однофазным питанием. В свою очередь, управление скоростью однофазных двигателей желательно в большинстве применений, так как это не только обеспечивает требуемую скорость, но и уменьшает потребление электроэнергии, и снижает уровень акустического шума.

Большинство серийно выпускаемых однофазных двигателей не реверсивные, т.е. они разработаны, чтобы вращаться только в одном направлении. Изменить направление их вращения можно только с помощью дополнительных средств: добавочной обмотки, внешних реле и переключателей, механического редуктора и т.д. Так же, если позволяет конструкция двигателя, реверсировать его можно с помощью преобразователей для регулировки скорости.

Существует множество разновидностей асинхронных двигателей с однофазным питанием. Конструкция и принцип их действия подробно описаны в литературе по электромеханике. Наиболее распространенным типом является двигатель с двумя статорными обмотками, одна из которых имеет в своей цепи постоянно-включенный рабочий конденсатор, который обеспечивает сдвиг тока в обмотках на 90 электрических градусов для образования вращающегося магнитного поля. Такой двигатель называется конденсаторным. О нем и пойдет речь в данной статье.

Читайте так же:
Регулировка замков капота volvo s80

Основным способом плавной регулировки скорости конденсаторного однофазного двигателя является частотный метод, реализуемый с помощью трехфазных или однофазных ШИМ-инверторов (преобразователей частоты), а также метод фазовой регулировки напряжения с помощью тиристорных регуляторов мощности. Рассмотрим эти методы подробнее.

Вариант 1. V/F управление с помощью однофазного ШИМ-инвертора

На выходе инвертора, состоящего из четырех IGBT-транзисторов (рис.1), формируется однофазное напряжение с переменной частотой и среднеквадратичным значением с линейной зависимостью V/F (вольт-частотная характеристика). За счет конденсатора в обмотке двигателя получается поле, близкое к круговому. Данный способ управления реализуется с помощью специализированных преобразователей частоты, которые разработаны исключительно для управления однофазными двигателями. В них, как правило реализованы специальные алгоритмы, управления двигателем, обеспечивающие устойчивый пуск и стабильную работу в заявленном диапазоне частот.

рис1. Однофазный частотный привод

Регулировать частоту можно, как вниз, так и вверх от номинальной, но в отличие от частотно-регулируемых трехфазных приводов, диапазон регулирования однофазного двигателя меньше. Оно, как правило, не превышает 1:10, за счет того, что емкостное сопротивление напрямую зависит от частоты.

К основным достоинствам данного метода управления можно отнести: 1) простоту ввода в эксплуатацию, т.к. не требуется конструктивных изменений двигателя; 2) гарантированно надежную и устойчивую работу, так как частотный преобразователь специально разработан для таких двигателей и в нем учтены все особенности их эксплуатации; 3) хорошие характеристики управления и возможности, присущие большинству преобразователей частоты (аналоговые и дискретные входы/выходы, ПИД-регулятор, предустановленные скорости, коммуникационные интерфейсы, защитные функции, и т.д.).

К недостаткам относится: 1) только однонаправленное вращение (невозможность без внешних коммутирующих устройств реверсировать двигатель); 2) достаточно высокая стоимость частотных преобразователей для однофазных двигателей, так как в них используются IGBT-модули со значительным запасом по току (например, в однофазном частотнике мощностью 1.1кВт используется IGBT-модуль такой же как в трехфазном на 2.2кВт) и из-за ограниченности предложения на рынке.

Вариант 2. V/F управление с помощью трехфазного ШИМ-инвертора

В данном случае используется стандартный преобразователь частоты с мостовой схемой IGBT-транзисторов (рис.2), формируемый на выходе трехфазное напряжение с фазовым сдвигом на 120 градусов. Обе обмотки однофазного двигателя и их средняя точка подключаются ко трем выходным фазам инвертора. Конденсатор, при этом, из схемы должен быть исключен. Так как обмотки геометрически сдвинуты на 90 градусов , а напряжение, прикладываемое к ним – на 120 электрических градусов, то полученное поле не будет круговым, и как следствие, момент будет пульсирующим. Причем среднее его значение за период будет меньше (рис.2), чем в случае питания от напряжений со сдвигом 90 гадусов.

рис.2. трехфазный частотный привод

При схеме подключения на рис.2 действующее напряжение на главной обмотке (Vгл) будет равно разности напряжений фаз A и C, а напряжение на дополнительной обмотке (Vдоп) = Vb-Vc. Изменяя порядок коммутации IGBT-транзисторов, можно легко изменять чередование напряжение на обмотках, а следовательно и направление вращения двигателя (рис.3) без каких-либо дополнительных аппаратных средств.

рис.3. графики выходного напряжения

Здесь стоит отметить, что не любой преобразователь частоты подойдет для управления однофазным двигателем, так как токи в фазах будут не симметричны, и в случае наличия защиты от асимметрии выходных фаз, работа преобразователя будет блокироваться. Как впрочем, и не любой конденсаторный двигатель подойдет для данного способа, так как у некоторых типов двигателей весьма затруднительно или невозможно убрать емкость из дополнительной обмотки, и дополнительная обмотка как правило выполнена более тонким проводом, что при отсутствии конденсатора может привести к её перегреву и межвитковому замыканию.

Иногда на свой страх и риск используют подключение однофазного двигателя с конденсатором к трехфазному инвертору, что большинством производителей частотных преобразователей запрещено. В этом случае надо выбирать частотник со значительным запасом по току по отношению к двигателю, в частотнике не должно быть защиты от обрыва/перекоса выходных фаз, и надо помнить, что при определенной частоте может возникнуть электрический резонанс в контуре конденсатор-обмотка двигателя, что приведет к его повреждению.

Читайте так же:
Как отрегулировать клапана на мотоблоке форза

Итак, достоинствами метода являются: 1) доступность на рынке и достаточно низкая цена преобразователей частоты с трехфазным выходом; 2) возможность реверсивной работы; 3) хороший диапазон регулирования скорости и возможности, присущие большинству преобразователей частоты (аналоговые и дискретные входы/выходы, ПИД-регулятор, предустановленные скорости, коммуникационные интерфейсы, защитные функции, и т.д.).

Недостатки метода: 1) пониженный и пульсирующий момент двигателя, повышенный его нагрев; 2) не все преобразователи частоты и конденсаторные двигатели годятся для данного метода, требуется предварительный анализ характеристик преобразователя и конструкции двигателя. К тому же, большинство производителей частотных преобразователей в своих инструкциях запрещают подключение однофазных двигателей, и в случае поломки могут снять с изделия свои гарантийные обязательства.

Вариант 3. Фазовая регулировка напряжения с помощью тиристорного регулятора

Отсутствие до недавнего времени доступного и качественного преобразователя частоты для однофазных двигателей приводило к поиску других решений, одно из которых — изменение напряжения статора при неизменной его частоте.

На выходе тиристорного регулятора, состоящего из двух, включенных встречно-параллельно тиристоров (рис.4), формируется однофазное напряжение с постоянной частотой и регулируемым среднеквадратичным значением за счет изменения угла (альфа) открывания тиристоров.

рис.4. схема и график регулятора мощности

Критический момент при таком регулировании будет снижаться пропорционально напряжению, критическое скольжение в останется неизменным.

Проведём оценку метода.
1) Регулирование однозонное – только вниз от основной скорости.
2) Диапазон регулирования в разомкнутом контуре, примерно, 2:1; стабильность скорости удовлетворительная; плавность высокая.
3) Допустимая нагрузка резко снижается с уменьшением скорости.
4) Рассмотренный способ регулирования неэффективен для использования в продолжительном режиме. Даже для самой благоприятной нагрузке — вентиляторной необходимо двух-трехкратное завышение установленной мощности двигателя, интенсивный внешний обдув, так как, допустим, если двигатель вращается 750 об/мин (когда синхронная частота 1500) — скольжение 0,5, и 0,5 мощности идет в нагрузку, а 0,5 — греет ротор (не считая других потерь).
5) Тиристорный регулятор — простое устройство в 3-4 раза более дешевое, чем преобразователь частоты, и именно эта особенность системы регулировки скорости напряжением приводила в ряде случаев к её неоправданному применению.

Заключение

Все три способа имеют право на существование, только выбор одного из них нужно делать исходя из конкретной прикладной задачи.

Безусловно, наиболее универсальным и наименее трудоемким на стадии проектирования является первый метод – регулирование с помощью преобразователя частоты с однофазным выходом. Этот способ годится для большинства применений и помимо конденсаторных двигателей его можно использовать и для управления однофазными двигателями с экранированными полюсами.

Второй способ – регулирование с помощью преобразователя частоты с трехфазным выходом, — требует предварительного изучения, как преобразователя, так и двигателя на предмет возможности совместной работы. И рекомендуется всегда выбирать преобразователь с существенным запасом мощности по отношению к двигателю. Этот метод оптимален в реверсивных приложениях.

Третий способ – регулирование скорости изменением напряжения, — может в ряде случаев использоваться для кратковременного снижения скорости маломощных вентиляторов и насосов, и весьма полезен и эффективен для снижения пусковых токов, для экономии энергии при недогрузках. Этот метод является самым бюджетным, но как подчеркивалось ранее, тиристорные регуляторы не должны применяться для регулирования скорости сколько-нибудь мощных двигателей, приводящих во вращение машины, работающие в продолжительном режиме.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector