Litekauto.ru

Авто Сервис
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулятор тока

Основными рабочими элементами регуляторов служат тиристоры, а также различные типы конденсаторов и резисторов. В высоковольтных устройствах дополнительно используются магнитные усилители. Модуляторы обеспечивают плавность регулировок, а специальные фильтры способствуют сглаживанию помех в цепи. В результате, электрический ток на выходе приобретает более высокую стабильность, чем на входе.

Регулятор тока

Регуляторы постоянного и переменного тока имеют свои особенности и отличаются основными параметрами и характеристиками. Например, регулятор напряжения постоянного тока имеет более высокую проводимость, при минимальных потерях тепла. Основой прибора является тиристор диодного типа, обеспечивающий высокую подачу импульса за счет ускоренного преобразования напряжения. Резисторы, используемые в цепи, должны выдерживать значение сопротивления до 8 Ом. За счет этого снижаются тепловые потери, предохраняя модулятор от быстрого перегрева.

Регулятор постоянного тока может нормально функционировать при максимальной температуре 40 С. Этот фактор следует обязательно учитывать в процессе эксплуатации. Полевые транзисторы располагаются следом за тиристорами, поскольку они пропускают ток лишь в одном направлении. За счет этого отрицательное сопротивление будет сохраняться на уровне, не превышающем 8 Ом.

Основным отличием регулятора переменного тока является использование в его конструкции тиристоров исключительно триодного типа. Однако полевые транзисторы применяются такие же, как и в регуляторах постоянного тока. Конденсаторы, установленные в цепь, выполняют лишь стабилизирующие функции. Фильтры высокой частоты встречаются очень редко. Все проблемы, связанные с высокими температурами, решаются установкой импульсных преобразователей, расположенных следом за модуляторами. В регуляторах переменного тока, мощность которых не превышает 5 В, применяются фильтры с низкой частотой. Управление по катоду в таких приборах выполняется путем подавления входного напряжения.

Во время регулировок в сети должна быть обеспечена плавная стабилизация тока. При высоких нагрузках схема дополняется стабилитронами обратного направления. Для их соединения между собой используются транзисторы и дроссель. Таким образом, регулятор тока на транзисторе выполняет преобразование тока быстро и без потерь.

Следует отдельно остановиться на регуляторах тока, предназначенных для активных нагрузок. В схемах этих устройств используются тиристоры триодного типа, способные пропускать сигналы в обоих направлениях. Ток анода в цепи снижается в тот период, когда понижается и предельная частота данного устройства. Частота может колебаться в пределах, установленных для каждого прибора. От этого будет зависеть и максимальное выходное напряжение. Для обеспечения такого режима используются резисторы полевого типа и обычные конденсаторы, способные выдерживать сопротивление до 9 Ом.

Очень часто в таких регуляторах применяются импульсные стабилитроны, способные преодолевать высокую амплитуду электромагнитных колебаний. Иначе, в результате быстрого роста температуры транзисторов, они сразу же придут в нерабочее состояние.

Резисторное регулирование

Для регулирования пускового тока и напряжения, подводимого к электродвигателю, в якорную цепь последовательно якорю (или якорю и обмотке возбуждения в случае двигателя последовательного возбуждения) подключают резисторы:

Резистивно-контакторная схема управления

Таким образом, регулируется ток, подводимый к электрической машине. Контакторы К1, К2, К3 шунтируют резисторы при необходимости изменения какого-либо параметра или координаты электропривода. Этот способ довольно еще широко распространен, особенно в тяговых электроприводах, хотя ему сопутствуют большие потери в резисторах и, как следствие, довольно низкий КПД.

Как регулировать мощность переменного тока

Решил как-то отец собрать для дачи некое устройство, в котором, по его заверению, можно будет варить сыр. Устройство сие вид имело могучий и представляло из себя железный короб, подозрительно напоминающий старую стиральную машинку. Внутрь короба (все также добротно!) были вмонтированы три тэна по 1700 Ватт каждый. В общем сыра должно было хватить на небольшой посёлок.

Изделие (внешне выглядящее как что-то из безумного макса), должно быть весьма технологичным и поддерживать заданную температуру в максимально узких пределах. Для этого рядом появилась ещё одна коробка с симисторами, к которым подключались ТЭНы и схема, выдающая высокий уровень при переходе синусоиды через ноль. А у меня появился интересный проект.

Итак нам нужно выходить на заданную температуру и поддерживать её, с этим должен справляться алгоритм ПИД регулятора. Глубоко вдаваться в его работу не буду, скажу лишь что он получает на вход текущую ошибку, а на выходе выдает какое-то число в заданных пределах. У меня таким числом будет мощность выдаваемая на ТЭН, хотя в принципе, это может быть любой инерционный процесс, например обороты двигателя. Что важно для ПИД регулятора, это чтобы выходная величина производила воздействие линейно. Поэтому попробуем разобраться в способах регулировки мощности и их линейности.

Читайте так же:
Лачетти хэтчбек регулировка крышки багажника

Как вообще регулируется мощность?

Мощность — это произведение силы тока на напряжение. Если представить это произведение графически, то для постоянного тока, это будет площадь прямоугольника со сторонами равными напряжению и току

Так как при постоянном сопротивлении и напряжении ток тоже будет постоянным, то заменим ось тока на ось времени. Сопротивление я беру постоянным для объяснения принципа регулирования.

Тогда при заданном напряжении (12 В) и сопротивлении в 12 Ом, по закону Ома: I=U/R, получаем ток равный 1 А, и соответственно мощность за единицу времени будет равна 12 Вт. При другом сопротивлении мощность, естественно тоже изменится.

Теперь, если мы хотим регулировать мощность за единицу времени, нам нужно как-то изменять площадь фигуры за единицу времени. Самым чистым способом будет просто изменять напряжение, тогда и мощность будет пропорционально изменяться. Но контроллер, как и любые цифровые устройства, не умеет плавно изменять напряжение на ножках, он может либо «поднимать» их до высокого уровня, либо «опускать» до низкого уровня. Этот недостаток он компенсирует скоростью, даже самый дохленький современный МК может работать на частотах в миллионы тактов в секунду. Чтобы регулировать мощность, контроллер будет очень быстро «дрыгать» ножкой, тем самым изменяя результирующая площадь импульса за единицу времени.

На этом принципе устроена широтно-импульсная модуляция, она же ШИМ. Изменяя время (ширину) импульса за период мы изменяем выдаваемую мощность. На рисунке выше, показано два периода ШИМа. Каждый период имеет отношение площади импульса к площади всего периода 0.5, те половину времени периода контроллер выдает высокий уровень сигнала, другую половину низкий. Отношение времени высокого уровня сигнала к времени низкого называется скважностью. Красная линия на графике отражает результирующую мощность за единицу времени, по ней видно что при скважности 0.5 мощность также упала на половину (с 12 до 6 Вт). Хорошая новость состоит в том, что, ШИМ в контроллерах реализован аппаратно. Так что для регулирования чего-то достаточно его запустить и, по необходимости, изменять скважность.

Для постоянного тока, режим ШИМа оптимален, причем чем более инерционный прибор мы к нему подключаем, тем меньшую частоту ШИМа можно использовать. Для большого ТЭНа достаточно чуть ли не одного герца, а вот для светодиодов лучше использовать частоту побольше. Кстати частота ШИМа в подсветке экрана ноутбука, зачастую оказывается чуть ли не решающим фактором при покупке, так как, при слишком низкой частоте, глаза будут быстро уставать.

Если попробовать провернуть трюк с ШИМом для переменного напряжения, мы увидим что все сломалось и мощность перестала регулироваться линейно

одинаковые промежутки времени стали давать нам разную площадь, а значит разную мощность. Однако, если разбить полученные отрезки на на ещё более мелкие, то процентное соотношение ширины импульса к ширине кусочка будет выравниваться.

Если мы возьмем равный процент выдаваемой мощности от каждого кусочка, в результате мы получим такой же процент, от мощности всей волны, а на выходе мы получим линейный регулятор мощности для переменного тока. Причем чем большую частоту будет иметь ШИМа, тем на большее количество кусочков он разобьет синусоиду, а значит мы получим большую линейность.

Это было бы решением всех проблем, но в моем случае устройством коммутировавшим нагрузку был не быстрый транзистор, а симистор — медленный прибор, с максимальными рабочими частотами в пределах нескольких сотен герц, к тому же симистор можно только открыть, закроется он сам при переходе через ноль. На таких частотах управлять переменным напряжением которое имеет частоту 50 Гц, линейно не получится. Поэтому здесь нужно использовать какой-то другой подход и как раз для него, помимо симисторов, была установлена схема перехода через ноль.

Читайте так же:
Регулировка сцепления зил 130 зазор лапок

В случае с симисторами лучше разбить синусоиду на куски с одинаковыми площадями и записать время каждого такого кусочка в таблицу. Тогда каждое последующее значение из таблицы будет линейно увеличивать мощность.

На графике выше полуволна синусоиды разбита на части разные по времени, но имеющие одинаковую площадь, а значит несущие в себе одинаковую мощность. Все что нам останется сделать это загрузить таблицу с временными интервалам в наш котроллер, синхронизировать какой-то из его таймеров с частотой синусоиды, для этого используется схема перехода через ноль, и просто брать из таблички нужное значение, в течении которого будет высокий уровень. Суть метода похожа на ШИМ, но немного доработанный и синхронизированный с источником переменного напряжения.

Расчёт таблицы мощности

Теперь можно перейти непосредственно к расчёту.

Изначально задача заключается в том чтобы разбить синусоиду на нужное нам количество кусочков, каждый из которых будет иметь одинаковую площадь. На этом моменте, обычно проступает холодный пот, так-как площадь под графиком это и есть геометрическое определение интеграла. Соответственно нам нужно будет взять интеграл от функции при этом определить такие пределы интегрирования, которые будут давать одинаковый результат. Затем (как будто расчёта интегралов мало!) полученные пределы нужно будет перевести во время задержки (время в течении которого будет сохранятся высокий уровень). После чего полученное время перевести в понятное для контроллера число — количество тиков таймера. Звучит страшно, а по факту сейчас разберёмся:

Во первых сама функция — как было написано выше мощность это произведение тока на напряжение, для переменного тока (без сдвига фаз), это утверждение также верно, но, так-как и ток и напряжение меняются со временем P=IU превращается в P=I*sin(t) * U*sin(t). Так как амплитуда синусоиды нас сильно не волнует, уравнение вырождается до P=sin^2(t).

Неопределённый интеграл от квадрата синуса

Теперь нужно подобрать пределы для определенных интегралов. Выберем, насколько частей мы хотим разбить нашу синусоиду: я выбрал сто, чтобы можно было регулировать мощность с шагом в 1%.

Итак мы нашли чему будет равен неопределённый интеграл и даже выбрали шаг. Теперь нужно подобрать пределы интегрирования. Смысл их подбора заключается в том, чтобы значение определенного интеграла было постоянным при их смене. Напомню, что неопределенный интеграл это формула, а определённый вполне конкретное число. Определённый интеграл считается по формуле:

То есть мы берем неопределённый интеграл, подставляем в него верхнее число, затем нижнее, и вычитаем второе из первого.

Наш неопределённый интеграл является смешанной тригонометрической функцией, а значит не имеет общего аналитического решения. Чаще всего такие функции решаются либо числовыми, либо графическими методами. Графический метода заключается в том что мы строим графики для правой и левой части уравнения их пересечение будет решением уравнения. На рисунке показано решение уравнения для 0.2

Наряду с графическим методом можно использовать численный, то есть подбор решения. Будем подставлять в неопределённый интеграл числа до тех пор пока не найдём решение). Можно использовать лист и бумажку чтобы попрактиковаться в математике, можно онлайн калькулятор, я же буду использовать Python и библиотеки numpy:

Отлично мы получили массив чисел (пределов интегрирования!), валидность этих чисел можно проверить подставив их в интеграл. В результате должна получится площадь равная выбранному шагу! Теперь, если подставить полученные числа на график мощности, должна получится следующая картина:

Если все сошлось, то можно двигаться дальше и задать получившимся числам размерность времени, потому что сейчас они в радианах. Чтобы это сделать нужно выяснить угловую скорость, для частоты сети, то есть количество радиан в секунду.

Тогда узнаем сколько сколько длится одна радиана

Теперь, значения задержек в радианах, превратим во время, умножив каждое значение на период радианы (T). Проверим ход своей мысли: действительно-ли получится время задержки, если умножить задержку, на период? Задержка имеет размерность радиан, период — секунд за радиану, мы хотим их перемножить. Тогда рад * ( сек / рад ) = сек. Мы получили время, а значит ход мыслей должен быть верным.

Читайте так же:
Регулировку усилия поворота рулевого колеса

Для расчётов я опять предпочту python:

На этом моменте мы получили универсальную таблицу задержек, теперь необходимо конвертировать её специально под микроконтроллер.

Расчёт таймера МК и перевод таблицы

Время необходимо перевести в понятную для МК величину — количество переполнений таймера. Но сначала необходимо определится с частотой таймера: чем выше частота, тем точнее он будет отмерять время, но с другой стороны, тем меньше времени будет оставаться на выполнение остальной программы. Здесь необходимо найти золотую середину.

Для определения минимально допустимой частоты таймера, надо найти числа в массиве с минимальной разностью между ними. Разность тем меньше, чем ближе в максимуму синусоиды мы двигаемся. Тогда возьмем задержку при которой синусоида достигает единицы и число перед ним, после чего найдем их разность:

5 мс — 4.9363 мс = 0.0636 мс

Получившееся число является максимально допустимым периодом между прерываниями таймера, тогда через него найдём минимально допустимую частоту

1 / 0.0636 = 15 КГц

Значит для заданной точности в 1% будет достаточно таймера с частотой 15КГц. Частота МК составляет 16 МГц, значит между прерываниями будет 1000 тактов процессора, этого достаточно для выполнения остальной части программы, так что можно смело настраивать таймер на заданную частоту.

Для настройки таймера на определенную частоту, не кратную тактирующей используется режим таймера CTC — Clear Timer on Compare. В этом режиме таймер досчитывает до заданного числа и сбрасывается, после чего операция повторяется. Число при котором будет происходить совпадение считается по формуле

Число = Тактовая частота МК / предделитель таймера / выбранная частота

Частота выбрана, теперь нужно перевести таблицу в тики таймера. Делать я это буду опять на Python

В общем-то на этом весь расчёт окончен, остается только отзеркалить получившийся массив для второй половины полуволны и загрузить в МК. Далее по прерыванию от синхроимпульса, нужно подать низкий уровень, на ножку управления симистором, запустить таймер и считать его переполнения (совпадения, тк. у нас режим CTC). Как только количество переполнений достигнет нужного числа из таблички, подаем высокий уровень на управляющую ножку. На этом линейный регулятор мощности переменного напряжения готов!

Заключение

Надеюсь статья была понятна и её было интересно читать. В дополнение хотелось бы сказать, сигнал перехода через ноль не приходит идеально вовремя, поэтому может потребоваться дополнительная коррекция, чтобы это исправить.

Код расчетов на python

Также, если кому-то будет интересно, могу поделится исходником готового регулятора для ардуино.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

Отзывы покупателей

На этот товар еще нет отзывов.

Источник постоянного тока LICON 60Вт/100Вт/DIN-12B

<h2> Источник постоянного тока — 60 или 100 Вт (DIN-12B), подготовленный для установки на рейку DIN </h2> <p> Источник постоянного напряжения зависит от общей потребляемой мощности всех управляемых фанкойлов. Licon предлагает два вида источников: мощностью 60 Вт и 100 Вт. Источники поставляются отдельно и крепятся на DIN-рейке в электрическом щите. </p> <p> </p> <ul> <li> <p> Источник постоянного напряжения с выключателем </p> </li> <li> <p> Бесшумная эксплуатация, высокая эффективность </p> </li> <li> <p> Установка на DIN-рейке </p> </li> <li> <p> Степень защиты IP 20 </p> </li> </ul> <table style="width: 100%; height: 100%;" cellspacing="1" cellpadding="1" border="1" align="center"> <tbody> <tr> <th> Модель<br> </th> <th> DR-60-12<br> </th> <th> DR-100-12 </th> </tr> <tr> <td> Мощность источника<br> </td> <td> 60 Вт<br> </td> <td> 100 Вт<br> </td> </tr> <tr> <td> Исходное напряжение питания<br> </td> <td> 230 V AC/0,88 A<br> </td> <td> 230 V AC/1,6 A<br> </td> </tr> <tr> <td> Напряжение на выходе<br> </td> <td> 12 V DC/4 A<br> </td> <td> 12 V DC/6,5 A<br> </td> </tr> <tr> <td> Размеры ш × в × г (мм)<br> </td> <td> 78 x 93 x 56<br> </td> <td> 100 x 93 x 56<br> </td> </tr> </tbody> </table> <h3> Пример расчета проектной мощности источника прямого напряжения</h3> <p> </p> <p> Для системы регулировки необходимо правильно рассчитать потребляемую электрическую мощность, чтобы правильно подобрать размеры источника прямого напряжения. Расчет общей потребляемой мощности приборов осуществляется путем суммирования потребляемой мощности всех конвекторов, оснащенных вентиляторами, управление которыми будет осуществляться через один термостат. </p> <p> Пример: </p> <p> <b><i>Проект предусматривает использование фанкойлов следующих типов: </i></b> </p> <p> 2 шт Licon PKOC 160/9/28 – в таблице находим потребляемую мощность 12 Вт </p> <p> 1 шт Licon PKOC 240/11/20 – в таблице находим потребляемую мощность 22,5 Вт </p> <p> 2 шт Licon PKOC 120/11/28 – в таблице находим потребляемую мощность 11 Вт (по выбору термоприводы – 4 шт – 4 x 1,8 Вт = 7,2 Вт) </p> <p> <b><i>Общая потребляемая мощность: </i></b> </p> <p> 12 + 12 + 22,5 + 11 + 11 + (7,2) = 68,5 Вт (75,7) Вт </p> <p> <b>Выбираем источник питания мощностью 100 Вт </b> </p> <p> <img width="920" alt="Пример расчета проектной мощности источника прямого напряжения" src="/upload/Materials/Licon/Licon%20PKOC%209-28-1.png" height="145" title="Пример расчета проектной мощности источника прямого напряжения" align="middle"><br> </p>

Читайте так же:
Какая должна быть температура двигателя для регулировки клапанов

Источник постоянного тока LICON 60Вт/100Вт/DIN-12B

Источник постоянного тока LICON 60Вт/100Вт/DIN-12B—>

Источник постоянного тока LICON 60Вт/100Вт/DIN-12B

Источник постоянного тока LICON 60Вт/100Вт/DIN-12B

&lt;h2&gt; Источник постоянного тока — 60 или 100 Вт (DIN-12B), подготовленный для установки на рейку DIN &lt;/h2&gt; &lt;p&gt; Источник постоянного напряжения зависит от общей потребляемой мощности всех управляемых фанкойлов. Licon предлагает два вида источников: мощностью 60 Вт и 100 Вт. Источники поставляются отдельно и крепятся на DIN-рейке в электрическом щите. &lt;/p&gt; &lt;p&gt; &lt;/p&gt; &lt;ul&gt; &lt;li&gt; &lt;p&gt; Источник постоянного напряжения с выключателем &lt;/p&gt; &lt;/li&gt; &lt;li&gt; &lt;p&gt; Бесшумная эксплуатация, высокая эффективность &lt;/p&gt; &lt;/li&gt; &lt;li&gt; &lt;p&gt; Установка на DIN-рейке &lt;/p&gt; &lt;/li&gt; &lt;li&gt; &lt;p&gt; Степень защиты IP 20 &lt;/p&gt; &lt;/li&gt; &lt;/ul&gt; &lt;table style=&quot;width: 100%; height: 100%;&quot; cellspacing=&quot;1&quot; cellpadding=&quot;1&quot; border=&quot;1&quot; align=&quot;center&quot;&gt; &lt;tbody&gt; &lt;tr&gt; &lt;th&gt; Модель&lt;br&gt; &lt;/th&gt; &lt;th&gt; DR-60-12&lt;br&gt; &lt;/th&gt; &lt;th&gt; DR-100-12 &lt;/th&gt; &lt;/tr&gt; &lt;tr&gt; &lt;td&gt; Мощность источника&lt;br&gt; &lt;/td&gt; &lt;td&gt; 60 Вт&lt;br&gt; &lt;/td&gt; &lt;td&gt; 100 Вт&lt;br&gt; &lt;/td&gt; &lt;/tr&gt; &lt;tr&gt; &lt;td&gt; Исходное напряжение питания&lt;br&gt; &lt;/td&gt; &lt;td&gt; 230 V AC/0,88 A&lt;br&gt; &lt;/td&gt; &lt;td&gt; 230 V AC/1,6 A&lt;br&gt; &lt;/td&gt; &lt;/tr&gt; &lt;tr&gt; &lt;td&gt; Напряжение на выходе&lt;br&gt; &lt;/td&gt; &lt;td&gt; 12 V DC/4 A&lt;br&gt; &lt;/td&gt; &lt;td&gt; 12 V DC/6,5 A&lt;br&gt; &lt;/td&gt; &lt;/tr&gt; &lt;tr&gt; &lt;td&gt; Размеры ш × в × г (мм)&lt;br&gt; &lt;/td&gt; &lt;td&gt; 78 x 93 x 56&lt;br&gt; &lt;/td&gt; &lt;td&gt; 100 x 93 x 56&lt;br&gt; &lt;/td&gt; &lt;/tr&gt; &lt;/tbody&gt; &lt;/table&gt; &lt;h3&gt; Пример расчета проектной мощности источника прямого напряжения&lt;/h3&gt; &lt;p&gt; &lt;/p&gt; &lt;p&gt; Для системы регулировки необходимо правильно рассчитать потребляемую электрическую мощность, чтобы правильно подобрать размеры источника прямого напряжения. Расчет общей потребляемой мощности приборов осуществляется путем суммирования потребляемой мощности всех конвекторов, оснащенных вентиляторами, управление которыми будет осуществляться через один термостат. &lt;/p&gt; &lt;p&gt; Пример: &lt;/p&gt; &lt;p&gt; &lt;b&gt;&lt;i&gt;Проект предусматривает использование фанкойлов следующих типов: &lt;/i&gt;&lt;/b&gt; &lt;/p&gt; &lt;p&gt; 2 шт Licon PKOC 160/9/28 – в таблице находим потребляемую мощность 12 Вт &lt;/p&gt; &lt;p&gt; 1 шт Licon PKOC 240/11/20 – в таблице находим потребляемую мощность 22,5 Вт &lt;/p&gt; &lt;p&gt; 2 шт Licon PKOC 120/11/28 – в таблице находим потребляемую мощность 11 Вт (по выбору термоприводы – 4 шт – 4 x 1,8 Вт = 7,2 Вт) &lt;/p&gt; &lt;p&gt; &lt;b&gt;&lt;i&gt;Общая потребляемая мощность: &lt;/i&gt;&lt;/b&gt; &lt;/p&gt; &lt;p&gt; 12 + 12 + 22,5 + 11 + 11 + (7,2) = 68,5 Вт (75,7) Вт &lt;/p&gt; &lt;p&gt; &lt;b&gt;Выбираем источник питания мощностью 100 Вт &lt;/b&gt; &lt;/p&gt; &lt;p&gt; &lt;img width=&quot;920&quot; alt=&quot;Пример расчета проектной мощности источника прямого напряжения&quot; src=&quot;/upload/Materials/Licon/Licon%20PKOC%209-28-1.png&quot; height=&quot;145&quot; title=&quot;Пример расчета проектной мощности источника прямого напряжения&quot; align=&quot;middle&quot;&gt;&lt;br&gt; &lt;/p&gt;

Читайте так же:
Оборудование для регулировки фар bosch

Понижаем постоянное напряжение

При конструировании электроники часто возникает необходимость понижения напряжения имеющегося блока питания. Мы также рассмотрим несколько типовых ситуаций.

Если вы работаете с микроконтроллерами – могли заметить, что некоторые из них работают от 3 Вольт. Найти соответствующие блоки питания бывает непросто, поэтому можно использовать зарядное устройство для телефона. Тогда вам нужно понизить его выход с 5 до 3 Вольт (3,3В). Это можно сделать, если опустить выходное напряжение блока питания путём замены стабилитрона в цепи обратной связи. Вы можете добиться любого напряжения как повышенного, так и пониженного – установив стабилитрон нужного номинала. Определить его можно методом подбора, на схеме ниже он выделен красным эллипсом.

Схема зарядного устройства

А на плате он выглядит следующим образом:

Стабилитрон на плате

На следующем видео автор демонстрирует такую переделку, только не на понижение, а на повышение выходных параметров.

На зарядных устройствах более совершенной конструкции используется регулируемый стабилитрон TL431, тогда регулировка возможна заменой резистора или соотношением пары резисторов, в зависимости от схемотехники. На схеме ниже они обозначены красным.

TL431 на схеме

Кроме замены стабилитрона на плате ЗУ, можно опустить напряжение с помощью резистора и стабилитрона – это называется параметрический стабилизатор.

Параметрический стабилизатор

Еще один вариант – установить в разрыв цепи цепочку из диодов. На каждом кремниевом диоде упадёт около 0,6-0,7 Вольт. Так опустить напряжение до нужного уровня можно, набрав нужное количество диодов.

Часто возникает необходимость подключить устройство к бортовой сети автомобиля, оно колеблется от 12 до 14,3-14,7 Вольт. Чтобы понизить напряжение постоянного тока с 12 до 9 Вольт можно использовать линейный стабилизатор типа L7809, а, чтобы опустить с 12 до 5 Вольт – используйте L7805. Или их аналоги ams1117-5.0 или ams1117-9.0 или amsr-7805-nz и подобные на любое нужное напряжение. Схема подключения таких стабилизаторов изображена ниже.

ИМС стабилизатор

Для питания более мощных потребителей удобно использовать импульсные преобразователи для понижения и регулировки напряжения от источника питания. Примером таких устройств являются платы на LM2596, а в англо-язычных интернет-магазинах их можно найти по запросам «DC-DC step down» или «DC-DC buck converter».

LM2596

Напоследок рекомендуем просмотреть видео, на которых наглядно рассмотрены способы понижения напряжения:

Вот и все наиболее рациональные варианты, позволяющие понизить напряжение постоянного и переменного тока. Надеемся, предоставленная информация была для вас полезной и интересной!

Как соединить 5 частей регулятора на 12 вольт.

Переменный резистор 10кОм.

Это переменный резистор 10ком. Изменяет силу тока или напряжений в электрической цепи, увеличивает сопротивление. Именно им регулируется напряжение.

Радиатор. Нужен для того, чтобы охладить приборы в случае их перегрева.

Фото 3

Резистор на 1 ком. Снижает нагрузку с основного резистора.

Фото 4

Транзистор. Прибор, увеличивает силу колебаний. В регуляторе он нужен, чтобы получить электрические колебания высокой частоты

Фото 5

2 проводка. Необходимы для того, чтобы по ним шел электрический ток.

Берем транзистор и резистор. У обоих есть 3 ответвления.

Проводятся две операции:

  1. Левый конец транзистора (делаем это алюминиевой частью вниз) присоединяем к концу, который находится в середине резистора.
  2. А ответвление середины транзистора соединяем с правым у резистора. Их необходимо припаять друг к другу.

Первый провод необходимо спаять с тем, что получилось во 2 операции.

Второй нужно спаять с оставшимся концом транзистора.

Фото 6

Прикручиваем к радиатору соединенный механизм.

Резистор на 1кОм припаиваем к крайним ножкам переменного резистора и транзистора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector