Litekauto.ru

Авто Сервис
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Системы управления ЭПС — Амплитудное регулирование со стороны низшего напряжения трансформатора

Системы управления ЭПС — Амплитудное регулирование со стороны низшего напряжения трансформатора

Амплитудное регулирование вторичного напряжения трансформатора осуществляется за счет изменения его коэффициента трансформации. Регулирование со стороны низшего напряжения производится изменением числа витков его вторичной обмотки. Для этого вторичная обмотка имеет ответвления, которые переключаются контакторами. В простейшей схеме (рис. 3.13) переключение ступеней трансформатора будет сопровождаться коротким замыканием секции трансформатора (если контактор 2 замыкается до размыкания контактора 1) или разрывом цепи тяговых электродвигателей (если контактор 2 замыкается после размыкания контактора 1). С целью ограничения величины тока короткого замыкания применяют схемы с переходным резистором, переходным реактором и вентильным переходом.

Рис. 3.13. Трансформатор с ответвлениями вторичной обмотки

Амплитудное регулирование вторичного напряжения трансформатора осуществляется за счет изменения его коэффициента трансформации. Регулирование со стороны низшего напряжения производится изменением числа витков его вторичной обмотки. Для этого вторичная обмотка имеет ответвления, которые переключаются контакторами. В простейшей схеме (рис. 3.13) переключение ступеней трансформатора будет сопровождаться коротким замыканием секции трансформатора (если контактор 2 замыкается до размыкания контактора 1) или разрывом цепи тяговых электродвигателей (если контактор 2 замыкается после размыкания контактора 1). С целью ограничения величины тока короткого замыкания применяют схемы с переходным резистором, переходным реактором и вентильным переходом.


Рис. 3.14. Амплитудное регулирование с переходным реактором: а —принципиальная схема; б — режим индуктивного сопротивления; в — режим делителя тока; г — режим делителя напряжения

Для уменьшения индуктивности рассеяния регулируемые части вторичной обмотки желательно выполнять концентрическими и равномерно располагать вдоль всей длины стержня магнитопривода трансформатора.

Что происходит с понижающим трансформатором при увеличении нагрузки

А ничего с ним не происходит))) Как понижал он напряжение- так и продолжает понижать- так уж он устроен.

На первичную обмотку (обмотка высокого напряжения) подается 110 000 Вольт, а со вторичной (обмотка низкого напряжения) снимается 10 000 Вольт.

Это идеальный вариант, когда напряжение на первичной обмотке стабильное и не меняется, а нагрузка вторичной обмотки или очень мала или ее совсем нет (трансформатор работает в режиме холостого хода).

На самом деле это совсем не так.

В действительности высокое напряжение на первичной нагрузке постоянно меняется в небольших пределах- 110-117кВ

А так как коэффициент трансформации у трансформатора величина неизменная, то получается что и на вторичной обмотке 10 кВ напряжение тоже колеблется так сказать “в ногу” с первичным напряжением.

А вслед за этим колебания напряжения передаются следующим понижающим трансформаторам 10/0,4 кВ…

И так эти колебания дойдут и до наших квартир и напряжение колебалось бы пропорционально с высоким напряжением 110 кВ.

Читайте так же:
После регулировки клапанов увеличились холостые обороты

И было бы у нас в розетках то 180 Вольт, то 250 и бесперестанно бы оно изменялось в течении суток. Думаю что никому не понравится когда свет в доме постоянно меняет яркость, как в том анекдоте- то потухнет, то погаснет, то совсем не загорит)))

Сварочный выпрямитель

Использование постоянного напряжения дает более качественный шов. Она позволяет кроме обычных видов обработки выполнять аргонно-дуговую сварку и другие виды работ.

Информация! Такие устройства кроме однофазных изготавливают трехфазные. Это увеличивает мощность с распределением нагрузки на три фазы и обеспечивает более «гладкое» выходное напряжение, без пульсаций.

Сварочные выпрямители различают по типу установленных выпрямительных блоков:

  • С двумя диодами. Вместо одной вторичной обмотки мотаются две и диоды подключаются по схеме с общей средней точкой.
  • С обычным диодным мостом. В однофазных аппаратах устанавливается обычный мост, из четырех диодов, в трехфазных — мост Ларионова, из шести.
  • Транзисторные. Редко встречаются из-за слишком мощных выходных транзисторов.
  • Тиристорные. Разновидность диодных аппаратов, но вместо диодов устанавливаются тиристоры и система управления. Регулировка осуществляется за счет изменения угла открытия тиристора и действующего значения напряжения.
  • Инверторные. Современные электронные аппараты индивидуального использования. Ток регулируется ручками управления или кнопками, расположенными на передней панели.

Эти трансформаторы изготавливаются разной мощности и предназначенные для подключения различного количества постов:

  • Однопостовые. Используются только одним сварщиком. Регулировка осуществляется как на рабочем месте, так и внутри аппарата. Вольтамперная характеристика может быть крутопадающей (мягкой), пологопадающей (жесткой), а также переключаемой.
  • Многопостовые. Имеют достаточную мощность для подключения нескольких (до 9) постов. Характеристика только жесткая, регулировать процесс сварки можно только на рабочем месте при помощи балластных сопротивлений.

Преимущества и недостатки сварочных трансформаторов

Основное преимущество сварочного трансформатора в простой конструкции без дорогих деталей, а как следствие более доступная цена оборудования и ремонта. При использовании источников питания переменного тока отсутствует магнитное дутье — отклонение сварочной дуги под воздействием магнитного поля.

Недостатком сварочных трансформаторов является менее стойкое горение сварочной дуги, повышенное разбрызгивание электродного металла по сравнению с источниками постоянного тока.

В основе работы ТН лежит его конструкция и явление электромагнитной индукции, возникающей между элементами:

Трансформатор подсоединяется к сети. На его первичную обмотку поступает ток.

Ток переменного характера проходит по магнитопроводу, вызывает магнитный поток, который в свою очередь проходит через обе обмотки и индуцирует в них ЭДС.

К вторичной обмотке поступает ток, возникший под действием ЭДС.

Величина ЭДС тесно связана с числом витков в каждой обмотке. Меняя число витков можно увеличить или уменьшить напряжение, идущее на потребителя с вторичной обмотки.

Читайте так же:
Как синхронизировать карбюраторы своими руками

Трансформаторы с увеличенным рассеянием

В отличии от силовых трансформаторов не сварочного назначения, у которых потери магнитных потоков стремятся уменьшить, большая часть сварочных трансформаторов специально разработана с увеличенным магнитным рассеянием. Это достигается размещением первичной и вторичной обмотки на значительном расстоянии друг от друга. Проще всего пояснить принцип увеличения магнитного рассеяния на примере трансформатора, у которого первичная и вторичная обмотки разнесены на разные стержни (рис.1). Обычно такой трансформатор имеет цилиндрические ( реже дисковые ) первичную 1 и вторичную 2 обмотки и стержневой магнитопровод 3.

Конструктивная схема и распределение магнитных

Рис. 1. Конструктивная схема и распределение магнитных
потоков в трансформаторе с разнесёнными обмотками

Формирование падающей внешней характеристики в трансформаторе с увеличенным рассеянием

При размещении первичной и вторичной обмоток на значительном расстоянии друг от друга в трансформаторе возникают большие потоки магнитного рассеяния, в результате чего с увеличением тока нагрузки снижаются поток, сцепляющиеся со вторичной обмоткой, и вторичное напряжение, что и объясняет наличие падающей внешней характеристики.

Регулирование режима в трансформаторе с увеличенным рассеянием

Изменение числа витков первичной и вторичной обмотки. От части витков сделаны отпайки,так что при пересоединении проводов, соединяющих трансформатор с сетью и нагрузкой, фактически меняется число витков, участвующих в работе. При изменении числа витков первичной обмотки W1 по соотношению меняется напряжение холостого хода U0 и пропорционально ему вторичный ток I2 .

При регулировании изменением числа витков первичной обмотки приходится завышать сечение магнитопровода, а при регулировании по вторичной стороне — сечение обмоточного провода. Поэтому витковое регулирование используется редко и только в дополнение к другим способам.

Перемещение магнитного шунта . На пути потоков рассеяния Ф1р и Ф2р устанавливается пакет трансформаторного железа, который выполняет роль магнитного шунта, т.е. участка магнитной цепи, параллельного основному магнитопроводу. Магнитный шунт может перемещатся.

Подмагничивание магнитного шунта . Магнитный шунт может быть и неподвижным. В этом случае его сопротивление Rтр изменяется благодаря обмотке, питаемой постоянным током через регулировочный реостат. При увеличении тока управления увеличивается и поток Фу, что приведёт к насыщению железа шунта, т.е. увеличению его магнитного сопротивления Rтр. А это вызовет увеличение сварочного тока I2.

Изменение степени разнесения обмоток. Здесь часть витков вторичной обмотки W2a находится на том же стержне, что и первичная обмотка, между ними установлена нормальная магнитная связь. Две другие катушки с числом витков W2б и W2в разнесены с первичной обмоткина разные стержни, их магнитная связь с первичной обмоткой ослаблены.

Использование реактивной обмотки. Такая дополнительная обмотка устанавливается на пути потоков рассеяния, в режиме нагрузки в этой обмотке находится ЭДС.

При последовательном согласном соединении реактивной обмотки со вторичной их ЭДС складываются, что даёт ступень больших токов. При последовательном встречном включении их ЭДС вычитаются, в результате имеем диапазон малых токов.

Читайте так же:
Не вставляется щуп при регулировке клапанов

Перемещение обмоток. Первичная и вторичные обмотки могут находится на одном стержне, но на значительном расстоянии друг от друга, в результате чего получаются большие потоки рассеяния Ф1р и Ф2р. Регулирование режима в этом случае осуществляется с изменением расстояния между обмотками.

Изменение соединения катушек первичной и вторичной обмоток. Если первичная и вторичная обмотки содержат каждая по две катушки, открывается ещё одна возможность ступенчатого регулирования. В варианте I используется половина обмоток трансформатора — одна первичная и одна вторичная катушка, в этом случае сопротивление трансформатора Хт1=Х’1+Х2. В варианте II две катушки первичной обмотки соединяются последовательно, две катушки вторичной обмотки соединены также последовательно. При этом индуктивное сопротивление двух половин трансформатора складываются, поэтому сопротивление трансформатора Хт2=2Х’1+2Х2=2Хт1 — вдвое выше, чем в первом варианте, а ток соответственно ниже. В варианте III катушки первичной обмотки соединены параллельно, так же параллельно соединены и катушки вторичной обмотки. При параллельном соединении складываются уже не сопротивления, а проводимости двух половин.

При таком регулировании напряжение холостого хода не меняется.

Трансформатор с подвижными обмотками.

Принцип действия такого трансформатора иллюстрирует рисунок 2. Наибольшее распространение получила конструктивная схема трансформатора со стержневым магнитопроводом 3, цилиндрическими первичной 1 и вторичной 2 обмотками, разбитыми каждая на две катушки. Подвижная обмотка ( обычно вторичная ) перемещается винтовым приводом 4. Основной поток трансформатора Фт замыкается по магнитопроводу, а потоки рассеяния Ф1р и Ф2р — по воздуху в пространстве между первичной и вторичной обмотками.

схема трансформатора с подвижными обмотками

Рис.2. Расчётная схема трансформатора с
подвижными обмотками

Падающая внешняя характеристика у трансформатора с подвижными обмотками получается благодаря увеличенному магнитному рассеянию, вызванному размещением первичной и вторичной обмоток на значительном расстоянии друг от друга.

Плавное регулирование режима, как уже отмечалось, производится благодаря перемещению подвижных обмоток. Ступенчатое увеличение тока осуществляется переключением катушек первичных и вторичных обмоток с последовательного на паралелльное соединение.

Регулирование тока у трансформатора с подвижными обмотками осуществляется за счёт изменения его индуктивного сопротивления: плавное перемещение обмоток, ступенчато-переключением соединения катушек параллельно или последовательно.

Конструкция трансформатора ТДМ - 317 У2

Рис.3. Конструкция трансформатора ТДМ — 317 У2

Трансформатор типа ТДМ-317 У2 является типичным примером серийной конструкции с подвижными обмотками (рис.3.7). Он имеет стержневой магнитопровод 2, первичную 6 и вторичную 4 обмотки, переключатель диапазонов тока 12, регулятор тока 1, раму8, колеса 7 и не показанный на рисунке кожух. Магнитопровод набран из холоднокатаных лакированных пластин высококремнистой трансформаторной стали марки 3414 толщиной 0,35 мм. Первичная и вторичная обмотки имеют по две катушки, расположенные попарно на стержнях магнитопровода.

Трансформатор с подвижным магнитным шунтом

Принцип действия трансформатора рассмотрим по рис.4. Он имеет неподвижные первичную 1 и вторичную 2 обмотки, стержневой магнитопровод 3 и подвижный магнитный шунт 4. Каждая обмотка имеет по две катушки, размещённые на разных стержнях. Потоки рассеяния Ф1р и Ф2р замыкаются через магнитный шунт.

Читайте так же:
Ремень генератора регулировка на логане

Падающая характеристика у трансформатора с магнитным шунтом получается благодаря увеличенному рассеянию, вызванному размещением первичной и вторичной обмоток на значительном расстоянии друг от друга и наличием магнитного шунта.

Конструктивная схема трансформатора с подвижным магнитным шунтом

Рис.4. Конструктивная схема трансформатора с подвижным магнитным шунтом

Регулирование режима в трансформаторе с магнитным шунтом осуществляется: плавно- перемещением магнитного шунта, ступенчато- переключением обмоток и изменением степени разнесения обмоток по стержням.

Трансформатор с подмагничиваемым шунтом

В массовом порядке выпускались трансформаторы для механизированной сварки под флюсом типов ТДФ-1001У3 и ТДФ11601 У3.

Трансформатор ТДФ-1001 (рис.5) имеет стержневой магнитопровод 3 и неподвижный шунт 4 также стержневого типа. Магнитная проводимость шунта регулируется с помощью обмотки управления 5, питаемой постоянным током. Первичная обмотка 1, состоящая из двух параллельно соединённых катушек, закреплена у верхнего ярма. Вторичная обмотка 2 состоит из трёх частей по две параллельно соединённых катушек в каждой: катушки 2а расположена рядом с первичной обмоткой, а катушка 2б и 2в отделены от первичной обмотки магнитным шунтом. Поэтому потоки рассеяния весьма велики.

Конструктивная схема трансформатора с подмагничивающим шунтом

Рис.5. Конструктивная (а) и упрощённая принципиальная (б) схемы трансформатора с подмагничивающим шунтом

Падающая характеристика у трансформатора с подмагничиваемым шунтом получается благодаря увеличенному рассеянию, вызванному размещением первичной и вторичной обмоток (или части последней) на значительном расстоянии друг от друга и наличием магнитного шунта.

Основной способ регулирования режима заключается в изменении индуктивного изменения трансформатора при изменении магнитного сопротивления шунта.

Трансформатор с реактивной обмоткой

Иногда возникает необходимость в дешёвом трансформаторе с низким ПН и узким диапазоном регулирования, например, при сварке на монтаже или в быту. Такой простейший трансформатор (рис. 6) имеет стержневой магнитопровод 3, первичную 1 и вторичную 2 обмотки, разнесённые на разные стержни. Поэтому потоки рассеяния замыкаются не только по лобовым поверхностям и в окне магнито повода, но ещё и по воздуху между верхними нижним ярмами (Ф1яр и Ф2яр).

Конструктивная схема трансформатора с реактивной обмоткой

Рис.6. Конструктивная (а) и упрощённая принципиальная (б) схемы
трансформатора с реактивной обмоткой

Трансформатор с обмотками, размещенными на разных стержнях, имеет падающую внешнюю характеристику благодаря увеличенному магнитному рассеянию как между стержнями,так и между ярмами магнитопровода.

Для регулирования режима используют реактивную обмотку 4. На рис. 6,б показано, что с помощью переключателя S эта обмотка последовательно соединена со вторичной.

Трансформатор с разнесёнными обмотками

Простейший трансформатор с разнесёнными на разные стержни обмотками может регулироваться и за счёт изменения числа витков вторичной и первичной обмотки. К сожалению, при этом одновременно меняется и напряжение холостого хода. Кратность такого регулирования не превышает 2. Поэтому витковое регулирование только за счёт увеличения или уменьшения числа витков обмоток в серийных конструкциях не применяется. Заметный эффект достигается при совмещении витков регулирования с изменением степени разнесения обмоток по стержням.

Читайте так же:
Как регулировать фары на daewoo matiz

На рис.7 показан трансформатор, у которого вторичная обмотка разнесена на разные стержни, тогда как первичная расположена на левом стержне.

Схема трансформатора с витковым регулированием

Рис.7. Конструктивная схема трансформатора
с витковым регулированием

По схеме рис.7 изготавливается трансформатор ТСБ-145 на три ступени регулирования, он снабжён вентилятором и втычным переключателем ступеней. Подобную схему имеет и трансформатор ТДС-140. Выпускается также нерегулируемый трансформатор ТС-50.

Трансформатор с индуктивностью и ёмкостью

Схема трансформатора с индуктивностью емкостью в цепи дуги

Рис.8. Принципиальная схема трансформатора с
индуктивностью емкостью в цепи дуги

Устойчивость горения дуги при использовании трансформатора с индуктивностью и ёмкостью высокая, поскольку повторное зажигание происходит при совместном питании дуги от трансформатора и ёмкости.

Практически это означает, что при ручной дуговой сварке в случае использования достаточной ёмкости напряжение холостого хода можно снизить примерно до U0 = 35-40 В безопасности снижения устойчивости горения дуги. Снижение U0 приводит к увеличению коэффициента трансформации n = U1/U0= I2/I1 и пропорциональному снижению первичного тока I1. На этой основе удаётся разработать сварочный трансформатор на ток I2 до 100 А, питающийся от осветительной сети с U1=220В и первичным током 15А.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Отличия и разновидности оборудования

Виды сварочных трансформаторов разделяются по рабочему предназначению. Они различаются по:

  • Весу и размеру. От компактных с ремнем для плеча, до больших, перемещаемых на колесиках или тельфером
  • Выдаваемому напряжению холостого хода от 48 V до 70 V.
  • Силе тока от 50 до 400 А. На крупных производственных предприятиях встречаются модели с показателем 1000А.
  • Потребляемого тока и количеству фаз — 220-380V. Одно и трехфазные версии.
  • Импульсной подаче тока или непрерывной.
  • Возможности работы с разными диаметрами электродов, от 2 до 6 мм.

Трансформаторная сварка — простой способ получить крепкое соединение. Она хорошо подойдет для монтажа заборов, сварки труб, создании стеллажей и каркасов беседок. Издаваемый гул от аппарата и треск сварочной дуги вносят некоторый дискомфорт от использования устройства.

Сварочные трансформаторы отличаются ценовой доступностью в магазинах и легкостью схемы сборки в домашних условиях. Их принцип действия несложен, а работа аппарата на видео помогает понять основы обращения с агрегатом. Качество шва сохраняется на высоком уровне, поэтому они широко применяются в быту и промышленной сфере.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector