Litekauto.ru

Авто Сервис
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Регулирование гидропривода

Данный способ регулирования основан на изменении объема рабочих камер гидромашин — насосов и гидромоторов.

Регулирование рабочего объема насоса

Подачу объемного насоса можно вычислить по формуле:

    где
  • q — объем рабочей камеры насоса
  • n — частота вращения вала насоса
  • η — объемный КПД

Получается, что изменения объем рабочей камеры насоса, можно регулировать расход жидкости, подаваемой в напорный трубопровод при постоянной частоте вращения.

Схема объемного регулирования гидропривода

Насосы, конструкция которых позволяет изменять объем рабочей камеры называют регулируемыми. Наибольшее распространение получили регулируемые пластинчатые и аксиально-поршневые насосы.

Конструкция регулируемых машин значительно сложнее чем нерегулируемых, а значит регулируемые насосы значительно дороже. Высокая стоимость является одним из главных недостатков объемного регулирования гидропривода.

Объемное регулирование насоса часто применяется для изменения скорости движения гидроцилиндров.

Регулирование рабочего объема гидромотора

Скорость вращения вала гидромотора можно вычислить, используя зависимость:

  • где q — объем рабочей камеры гидромотора
  • n — частота вращения вала гидромотора
  • η — объемный КПД гидромотора

Используя данную зависимость можно сделать вывод, что изменяя объем рабочей камеры гидромотора можно регулировать скорость вращения вала.

Регулирование скорости вращения вала гидромотора путем изменения его рабочего объема

Регулируемым называют гидромотор, в конструкции которого предусмотрена возможность изменения объема рабочей камеры. Наиболее часто используются регулируемые аксиально-поршневые моторы, существуют конструкции регулируемых пластинчатых и радиально-поршневых гидромоторов.

Регулируемый аксиально-поршневой насос с наклонным блоком

На риунке показан регулируемый аксиально-поршневой насос, изменение узла наклона блока, в данном случае, осуществляется с помоью механической передачи. При изменении угла наклона меняется величина хода поршней, а значит и подача насоса, чем меньше уогл — тем меньше ход.

Достаточно часто используется схема объемного регулирования с одновременным использованием регулируемых насоса и гидромотора. Наибоольшее распространение получили регулируемые аксиально-поршневые моторы.

Преимущества объемного регулирования

  • высокий КПД
  • отсутствие нагрева жидкости в результате дросселирования

Недостатки объемного регулирования

  • высокая стоимость
  • сложность конструкции регулируемых машин
  • медленное срабатывание
Читайте так же:
Карбюратор к 151 винт качества регулировка

Объемное регулирование

Данный способ регулирования основан на изменении объема рабочих камер гидромашин — насосов и гидромоторов.

Регулирование рабочего объема насоса

Подачу объемного насоса можно вычислить по формуле:

  • где
  • q — объем рабочей камеры насоса
  • n — частота вращения вала насоса
  • η — объемный КПД

Получается, что изменения объем рабочей камеры насоса, можно регулировать расход жидкости, подаваемой в напорный трубопровод при постоянной частоте вращения.

Схема объемного регулирования гидропривода

Насосы, конструкция которых позволяет изменять объем рабочей камеры называют регулируемыми. Наибольшее распространение получили регулируемые пластинчатые и аксиально-поршневые насосы.

Конструкция регулируемых машин значительно сложнее чем нерегулируемых, а значит регулируемые насосы значительно дороже. Высокая стоимость является одним из главных недостатков объемного регулирования гидропривода.

Регулирование рабочего объема гидромотора

Скорость вращения вала гидромотора можно вычислить, используя зависимость:

  • где q — объем рабочей камеры гидромотора
  • n — частота вращения вала гидромотора
  • η — объемный КПД гидромотора

Используя данную зависимость можно сделать вывод, что изменяя объем рабочей камеры гидромотора можно регулировать скорость вращения вала.

Регулирование скорости вращения вала гидромотора путем изменения его рабочего объема

Регулируемым называют гидромотор, в конструкции которого предусмотрена возможность изменения объема рабочей камеры. Наиболее часто используются регулируемые аксиально-поршневые моторы, существуют конструкции регулируемых пластинчатых и радиально-поршневых гидромоторов.

Достаточно часто используется схема объемного регулирования с одновременным использованием регулируемых насоса и гидромотора.

Преимущества объемного регулирования

  • высокий КПД
  • отсутствие нагрева жидкости в результате дросселирования

Недостатки объемного регулирования

  • высокая стоимость
  • сложность конструкции регулируемых машин
  • медленное срабатывание

Гидравлические моторы

Гидравлические моторы предназначены для преобразования гидравлической энергии (давления P и расхода Q) в механическую (крутящий момент и частоту вращения). Существует множество типов и конструкций гидравлических моторов, и нужно отметить, что большинство из них имеют конструкцию аналогичную с гидронасосами. Как и насосы, гидромоторы (гидродвигатели) применяющиеся в гидростатических приводах объёмного типа. Объёмный гидромотор это такой мотор, в котором энергия потока рабочей жидкости преобразуется в механическую энергию под действием сил давления поршней или пластин при заполнении жидкостью рабочей камеры.

Читайте так же:
Плавность регулировки переменного резистора

Основными параметрами гидромоторов являются:

Рабочий объем (см3/об) – объем жидкости который необходимо пропустить через гидромотор для поворота его вала на один полный оборот

Рабочее давление (МПа, bar)

Крутящий момент (Н∙м)

Частота вращения (об/мин)

Типы гидравлических моторов

Разнообразие гидромоторов

При выборе типа гидромотора для гидросистемы необходимо учитывать ряд критериев и особенностей разрабатываемой гидросистемы.

Основными критериями выбора гидромотора являются:

Номинальное и максимальное давление

Допустимая вязкость рабочей жидкости

Надежность и ремонтопригодность

Конструктивно различают следующие типы гидромоторов:

Аксиально-поршневые гидромоторы с наклонным блоком

Аксиально-поршневые гидромоторы с наклонным диском

Линейные гидродвигатели (Гидроцилиндры)

Устройство и принцип работы гидромотора

Гидромотор принцип работы

Основная задача гидравлического мотора — преобразование энергии потока рабочей жидкости в энергию механическую, которая передаётся через вал мотора в виде момента и частоты вращения. Вначале рабочая жидкость поступает в распределительную систему гидромотора, откуда затем поступает в рабочие камеры блока поршней. Камеры заполняются, в них возрастает давление, поршни перемещаются и в результате на валу возникает крутящий момент. В гидромоторах аксиального типа после завершения цикла нагнетания и вытеснения рабочей жидкости из цилиндрической группы поршни начинают обратное действие. Конструкция гидромотора состоит из: корпуса и функциональных деталей и каналов направления рабочей жидкости. Главным элементом является цилиндрический блок, где размещается поршневая группа, совершающая возвратно-поступательные движения. Поршневая группа постоянно прижимается к распределительному диску за счёт пружины и действующим давлением рабочей жидкости. Выходной вал гидромотора обычно выполнен в виде шлицевого или шпоночного узла. Так же гидромотор имеет специальный дренажный канал для отвода лишней жидкости. Регулируемые гидромоторы имеют специальный блок клапанов, который монтируется непосредственно на корпус.

Схема работы гидромотора

Преимущества гидромотора перед электродвигателем?

Гидро&электромотор

Как мы уже знаем основными параметрами для гидромотора являются: его рабочий объем, крутящий момент, передаваемый на вал и частота вращения. Увеличивая или уменьшая подачу рабочей жидкости мы можем регулировать скорость вращения вала гидромотора. Здесь все просто: увеличивая подачу жидкости мы увеличиваем скорость вращения и соответственно уменьшая подачу — уменьшаем скорость вращения вала. Современные гидромоторы по своим характеристикам имеют более широкий диапазон регулирования скорости вращения вала по сравнению с электродвигателями.

Читайте так же:
Регулировка замков капота volvo s80

Еще нужно отметить, что время для разгона и остановки гидромотору нужно гораздо меньше, чем электродвигателю, всего несколько секунд. А так же гидромотору не страшны частые включения/выключения. Гидромоторы применяют в тех случаях, где работа электродвигателя не возможна.

Дроссельное регулирование

При дроссельном регулировании расхода (обычно в контурах с насосами постоянной подачи) скорость движения исполнительных механизмов регулируют, изменяя проходное сечение дросселей. В этом случае используются три основные схемы установки дросселя в гидросистеме: на входе, на выходе и в ответвлении (рис. 1).

При анализе гидросистем установлено, что при дроссельном регулировании расход меняется в зависимости от давления, создаваемого внешней нагрузкой. Соответственно скорость исполнительного механизма и Δ Р также зависит от внешней нагрузки и от формы и длины дросселирующей щели: конический дроссель, продольная канавка треугольной или прямоугольной формы, щелевой дроссель или кольцевой дроссель.

Дроссельные схемы регулирования скорости из-за больших потерь мощности малоэффективны, особенно при эксплуатации гидроприводов большой мощности. Однако дроссельное управление расходом проще и дешевле, поэтому для привода машин небольшой мощности или редко включаемого привода, например для плавного пуска и остановки машины, нередко применяют дроссельное регулирование, при котором часть РЖ сливается в бак, а ее энергия преобразуется в тепло, нагревая РЖ в гидросистеме.

На рис. 2, а, б показаны условное обозначение и продольные сечения двухлинейных регулируемых дросселей, предназначенных для встраивания в трубопроводы гидросистем.

Рис. 2. Условные обозначения и продольные сечения двухлинейных регулируемых дросселей типа 2CN20 (а) и 2CR30 (б)

Эти регулируемые дроссели с коническим запорным элементом патронного исполнения предназначены для регулирования расхода РЖ в обоих направлениях. Типичное применение – регулирование скорости движения штоков гидроцилиндров и частоты вращения гидромоторов. Дроссель регулируемый типа 2CR30 имеет встроенный обратный клапан, который свободно пропускает поток РЖ в одном направлении, но с дросселированием потока в обратном направлении. Вращением запорного элемента можно изменять проходное сечение дросселя и регулировать расход РЖ приблизительно пропорционально виткам резьбы, а также использовать дроссель как запорный клапан. На рис. 3 показаны условное обозначение и общие виды регулируемых дросселей с обратными клапанами.

Читайте так же:
Регулировка сцепления чери индис робот

Рис. 3. Условное обозначение (а) и общий вид (б) регулируемых дросселей с обратными клапанами серий VP-NDV-10 и VP-NDV-6

Эти регулируемые дроссели применяют для дросселирования потока в одном направлении и свободного прохода потока в обратном направлении. Дроссели имеют два дросселирующих золотника с регулировочными винтами и два обратных клапана, встроенных в корпус. Поток РЖ от насоса проходит под низким давлением через обратный клапан от входного отверстия V к отверстию Р, соединяемому с гидродвигателем (см. графическое обозначение). Обратный поток РЖ от Р к V проходит при переменном дросселировании в зависимости от регулирования дросселирующим золотником. Примеры применения регулируемых дросселей в типовых гидравлических схемах приведены на рис. 4.

Рис. 4. [b]Примеры применения регулируемых дросселей в типовых гидравлических схемах:[/b] 1 – регулирование скорости на входе потока; 2 – регулирование скорости на выходе потока; 3 – защита манометра от пульсаций давления; 4 – регулирование частоты вращения реверсивного гидромотора

Основные характеристики

ПроизводительSauer Danfoss
ТипГидромотор
Типоразмер32
Рабочий объем(куб. см)32,0
Максимальная скоростьвращения(об/мин)номинальная — 500максимальная — 625
Максимальный крутящиймомент(Н·м)номинальный — 29максимальный — 51пиковый — 57
Максимальная мощность (кВт)номинальная — 1,1максимальная — 2,0
Максимальный перепаддавления (бар)номинальный — 70(55)максимальный — 125(55)пиковый — 140(55)
Максимальный расход (л/мин)номинальный — 16максимальный — 20
Максимальное давление страгиванияненагруженного вала (бар)4
Минимальный моментстрагивания (Н·м)для макс. перепада давления вноминальном режиме — 24для макс. перепада давленияв перегрузочном режиме — 42
Минимальная скорость вращения (об/мин)50
Гарантийный срок12 месяцев

Как выбрать гидромотор

Применение гидравлического двигателя обычно диктует требуемую мощность и диапазон скоростей двигателя, хотя фактическая скорость и требуемый крутящий момент могут иногда варьироваться при сохранении требуемой мощности. Тип выбранного двигателя зависит от требуемой надежности, срока службы и производительности.

Как только тип жидкости определен, выбор фактического размера основывается на ожидаемом сроке службы и экономичности всей установки на машине. Гидравлический двигатель, работающий с мощностью ниже номинальной, обеспечит увеличение срока службы, более чем пропорциональное снижению производительности ниже номинальной мощности.

Как работает гидромотор

Максимальная мощность, создаваемая двигателем, достигается при работе при максимальном давлении в системе и при максимальной скорости вала. Если двигатель всегда будет работать в этих условиях, его начальная стоимость будет самой низкой. Но там, где необходимо снизить выходную скорость, следует учитывать общую стоимость двигателя с уменьшением скорости, чтобы оптимизировать общие затраты на установку привода.

Читайте так же:
Сварочный генератор не регулирует ток

Преимущества компании Гидролидер

· Наши менеджеры предоставляют качественную и полноценную консультацию как в подборе, так и в эксплуатации оборудования. При необходимости, мы поможем вам подобрать аналог нужной вам детали;

· В нашем гипермаркете самые низкие цены на всю продукцию. Мы работаем напрямую с производителем, это позволяет нам оставаться №1 на рынке;

· Ассортимент нашего каталога постоянно расширяется и обновляется новинками из каталогов производителей.

Компания Гидролидер может помочь вам с выбором гидравлического оборудования – просто выберите нужный компонент у нас на сайте и закажите, с вами свяжутся наши менеджеры, чтобы уточнить детали.

12.11.2021 Причины поломок радиально-поршневых насосов

голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector